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Abstract. Cold hydrogen-hydrogen scattering has been investigated using close coupling approximation
(CCA) model. The total wave function of the system is expanded in terms of atomic expansion basis. The
effect of electron exchange and coupling to the continuum of both the atoms are taken into account. Singlet
and triplet partial wave elastic and total cross-sections are presented and compared with existing theoretical
predictions. Thermally averaged total cross-sections with respect to temperature are also provided along
with their earlier results.

PACS. 34.50.-s Scattering of atoms and molecules – 31.15.Ar Ab initio calculations

1 Introduction

The development of low temperature physics initiates
many investigations in different branches of physics. There
was a revolution in experimental techniques for cool-
ing and manipulating atoms using LASER based models
that helps to achieve Bose Einstein Condensate (BEC) of
atoms [1–4]. Investigations at cryogenic temperature have
renewed interest in atom-atom scattering, in general. The
low temperature scattering parameters for the H-H system
have many applications in different branches of physics.
It has been detailed by Koyama and Baird (KB) [5] and
Jamieson et al. (JDY) [6]. In atom-atom collisions, the H-
H scattering problem is the most simplest and the most
detailed studied theoretically [5–13]. Moreover, the BEC
of H atoms was successfully observed in 1998 by Fried
et al. [4]. This has stimulated further studies on the H-H
system. All the calculations have been carried out using
the Born-Oppenheimer (B-O) separation model. In this
model leptonic and hadronic motions are separated and
the total wave function is expanded in a molecular orbital
basis. This model is adiabatic in nature and the coupling
between the nuclear and the light particles is neglected.
One has to calculate the B-O potential at some discrete
values for inter nuclear separation, R, and these values are
then fitted to the long-range potentials (−(C6

R6 + C8
R8 + C10

R10 )).
It is very difficult to accurately calculate the B-O poten-
tial of an atom-atom system. The B-O potential, even for
the H-H system, has been improved systematically over
last three decades [14–20]. The effect of electron exchange
in the asymptotic region is approximated by a local ex-
change potential. The theoreticians are not satisfied with
their triplet B-O potential available so far for the H-H
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system. On the other hand, the singlet B-O potentials for
hydrogen-alkali atom systems are not free from error.

Recently the B-O result for the H-H system is found
to be extremely sensitive to the reduced mass of the
system [22–24]. The effect on the results using nuclear and
atomic mass is found to be differ by around 35%. Such dra-
matic change in the scattering length with mass factor has
not been noticed earlier.

The present situation demands an alternative model
to investigate atom-atom scattering. In our earlier at-
tempt [33] we investigated H-H scattering using a close
coupling model which is ab initio and non adiabatic in na-
ture. We predicted the scattering lengths, effective ranges
and thermally averaged total triplet cross-section at 2 K.
As this was our first attempt we performed our calcu-
lations neglecting mass effect. In the close coupling ap-
proximation (CCA) the total wave function is expanded
in terms of those of bound atomic subsystems, instead of
using molecular orbital expansion employed earlier. The
effect of exchange is explicitly taken care of by antisym-
metrizing the total wave function of the system. The cou-
pling between the constituent particles is included explic-
itly in this model. In this model one does not require to
calculate the effective potentials (short and long ranges)
separately. This model takes care of all the parts of the
effective optical potentials automatically. The lowest or-
der long range potential i.e. van der Waals potential and
the higher order potentials are included via the basis sets
employed in our model. We have included the effect of
the continuum of both the atoms via pseudostates. This
model is ab initio in nature and theoretically sound. The
coefficients of the long range potential (C6, C8 and C10)
are found to be in good agreement with the exact val-
ues [33]. This is a completely different approach to the adi-
abatic model employed so far. Knowledge of the eigen and
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Fig. 1. The coordinate system employed.

pseudostates are sufficient to carry out the necessary cal-
culations. This CCA model has been employed most suc-
cessfully to anti-atom − atom scattering [26–28], positro-
nium − atom [29–31] and positronium − positronium [32]
scattering by our group.

In the present article we extend our earlier calculations
having the same basis sets at higher energies and predict
the results for few low order partial waves (J = 0 to 5) and
total cross-sections for both the singlet and triplet states
in the energy range 10−10 a.u. to 4×10−4 a.u. and compare
with the existing theoretical predictions. We also compare
our thermally averaged total triplet cross-section with the
existing theoretical results as a function of temperature.
This calculations are performed to find the suitability of
the present model to investigate atom-atom scattering sys-
tem.

2 Theory

In Close Coupling Approximation (CCA) method the to-
tal wave function of the system is expanded as

ψ±(�r1, �r2, �R) =
1√
2

∑
(1±P12)φν(�r1)φη(�r2)F±

νη(�R) (1)

where P12 is the exchange operator. φν(�r1) and φη(�r2)
stand for the wave functions describing the bound states
of the colliding hydrogen atoms. In Figure 1, �r1 and �r2 are
the position vectors of two electrons from their respective
nucleus of each hydrogen atom and �R is the hadronic sep-
aration. F±

νη(�R) represents the unknown scattered wave
function. The super script ‘+’ stands for singlet scatter-
ing while ‘-’ denotes triplet case. In the present model we
assume that mass, M of the nucleus is infinitely heavy and
the term of the order of m

M has been neglected, m being
the mass of the electron.

The total wave function ψ will satisfy the following
Schrödinger equation

(H − E)ψ±(�r1, �r2, �R) = 0. (2)

One can recast the above equation into a set of coupled
inhomogeneous integral equations for the scattering am-
plitudes in momentum space. Details of the deduction is
given by Ghosh et al. [34]. The resulting three dimensional

coupled integral equation (Lippmann-Schwinger type) for
the scattering amplitude takes the form

f±
ν′η′;νη(�k′, �k) = fB±

ν′η′;νη(�k′, �k)

− 1
2π2

∑

ν′′η′′

∫
d�k′′

fB±
ν′η′;ν′′η′′(�k′, �k′′)f±

ν′′η′′;νη(�k′′, �k)

k2
ν′′η′′ − k′′2 + iε

(3)

where
fB± = fB±gB (4)

fB and gB are the first order direct and exchange scat-
tering amplitudes respectively. Expression of the above
scattering amplitudes, f± (Eqs. (3) and (4)) are exact.
The direct (fB) and exchange (gB) scattering amplitudes
are given by

fB = − µ

2π

∫
eiQRφ∗η′(�r2)φ∗ν′ (�r1)Vdφν(�r1)φη(�r2)d�r1d�r2d�R

(5)
and

gB = − µ

2π

∫
eiQRφ∗η′ (| �R− �r1 |)φ∗ν′(| �R+ �r2 |)

× (H − E)φν(�r1)φη(�r2)d�r1d�r2d�R. (6)

Here potential in the direct channel is

Vd =
1
R

− 1

| �R+ �r2 | −
1

| �R − �r1 | +
1

| �R+ �r2 − �r1 | · (7)

The evaluation of the direct first order matrix elements
are straightforward. On the other hand, the exchange ele-
ments are very complicated as these involve multicentered
integrals.

The total angular momentum, J , of the scattering sys-
tem is a constant of motion. We express the scattering
amplitude in partial wave decomposed form as

f±
ν′η′;νη(�k′, �k) =

1√
kk′

∑

JM

∑

J1M1

∑

J′
1M ′

1

∑

LML

∑

L′M ′
L

(
L′ l′p J ′

1

M ′
L m′

p M
′
1

)

×
(
J ′

1 l′t J
M ′

1 m
′
t M

)
Y ∗

L′M ′
L
(k̂′)T J±(τ ′k′; τk)YLML(k̂)

×
(

L lp J1

ML mp M1

) (
J1 lt J
M1 mt M

)
(8)

and a similar expression for fB± with T J± on the right
side of equation (8) is replaced by BJ±. Here lp and lt
are the angular momenta of the bound projectile and
the target atoms, respectively, and L represents the an-
gular momentum of the moving hydrogen atom. τ rep-
resents the set of quantum numbers (np, lp, nt, lt, J1, L).
The corresponding final state quantum numbers are de-
noted by primes. After partial wave analysis, equation (3)
becomes one-dimensional coupled-equation for unknown
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amplitudes T J± as:

T J±(τ ′k′; τk) = BJ±(τ ′k′; τk)

− 1
2π2

∑

τ ′′

∫
dk′′k′′

BJ±(τ ′k′; τ ′′k′′)T J±(τ ′′k′′; τk)
k2

ν′′η′′ − k′′2 + iε
· (9)

The real part of the elastic phase shift for Jth partial wave
is given as:

δJ (k) =
1
2
tan−1

{
Re[T J(τ0k0; τ0k0)]

2π − Im[T J(τ0k0; τ0k0)]

}
(10)

where τ0 designates the initial states of both the atoms
and the angle integrated Jth partial wave elastic cross
section is given by

σ(J) =
(2J + 1)

4πk2
0

|T J(τ0k0; τ0k0)|2· (11)

Here the total singlet and triplet cross-section is ex-
pressed as

σs(E) =
1
2

∑

evenJ

σ(J) +
3
2

∑

oddJ

σ(J) (12)

and
σt(E) =

3
2

∑

evenJ

σ(J) +
1
2

∑

oddJ

σ(J) (13)

respectively. The thermally averaged total cross-section
(singlet or triplet) is defined by [6]

〈σ(s/t)(T )〉 =
1

(kBT )2

∫ ∞

0

σ(s/t)(E)Eexp(−E/kBT )dE

(14)
where kB is Boltzmann’s constant.

It is not possible to solve an infinite number of coupled
equations (Eq. (9)). In practice, a few number of eigen
or pseudo states are retained and the integral equations
(Eq. (9)) are solved. The eigen and pseudostates are cho-
sen such a way that should cover all the scattering space
meaningfully.

In the present investigation, the following basis sets
are used
(A) H(1s)+H(1s);
(B) H(1s, 2s, 2p)+H(1s, 2s, 2p);
(C) H(1s, 2s, 2p̄)+H(1s, 2s, 2p̄);
(D) H(1s, 2s, 2p̄, 3d̄)+H(1s, 2s, 2p̄, 3d̄).
The different basis sets have been employed to see the rela-
tive importance of each added eigen and pseudostates. Ex-
cept from the first (A), which is known as static-exchange
model, the other two models take care of the lowest order
long range van der Waals interaction to different extent.
The Model (D) includes higher order long range forces
also. In model (C) and (D) we have used 2p̄ and 3d̄ pseu-
dostates due to Damburg and Karule [35] which are of the
form

ψ2p̄(�r) =
(

32
129

)( 1
2 )

r

(
1 +

1
2
r

)
exp (−r) (15)

and

ψ3d̄(�r) =
(

32
535

)( 1
2 )

r2
(

1
2

+
1
3
r

)
exp (−r) (16)

having binding energies

E2p̄ = − 7
86

(a.u.) (17)

and
E3d̄ =

13
214

(a.u.)· (18)

3 Results and discussion

Two sets of coupled integral equations (Eq. (9)), one
for singlet (T J+) and other for triplet (T J−), are solved
numerically by matrix inversion method. Details of the
method are given by Chakraborty et al. [36]. However, in
the present case the convergence of the integral equation
with respect to quadrature points is very complicated. We
have to construct a new technique for the convergence of
the integral equation. Sufficient care has been taken to
achieve the convergent result. The error in the integration
is less than 0.1%. Calculation has been performed for all
the four basis sets mentioned above. This has been done
to find the convergence of the results with added atomic
states [33]. Scattering cross section decreases steadily from
the static exchange value with the addition of higher ex-
cited states of both the atoms. We present the singlet scat-
tering results with the use of basis set (C), as the predic-
tions of the singlet obtained by using the basis set (D)
are marginally different from the corresponding values us-
ing the basis set (C). On the other hand, it is essential to
use the basis set (D) to get the scattering parameters for
the triplet case. In atom-atom scattering the long range
potentials are of key importance for the determination of
scattering parameters. The lowest order long range po-
tential is the van der Waals potential. In the present non
adiabatic formalism the long range potentials are gener-
ated automatically. These values depend on the basis set
employed. The first order values of the coefficients of the
long range adiabatic potentials C6, C8 etc can also be
estimated from our formalism [37]. The present estimated
values of C6, C8 and C10 are given in our earlier paper [33]
and found to be reliable. For the singlet case we use the
basis set (C). It means that we have taken the lowest order
van der Waals potential only. The effect of higher order
potential has found to be marginal. This is also evident in
our earlier paper [33] to study scattering lengths of this
system. Scattering length is sensitive to the details of the
potential. Table II of the earlier paper [33] shows that our
singlet scattering length is converged with basis set (C)
whereas higher order long range forces apart from van der
Waals interaction is essentially required to converged re-
sult for triplet scattering length. Jamieson et al. [6] also
mentioned this.

Here we present the results in the energy range
1×10−10 a.u. to 4×10−4 a.u. The s-wave singlet and triplet
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Table 1. Partial wave cross-sections σJ in units of 10−16 cm2

for (a) singlet and (b) triplet as a function of relative energy E.

(a) JDY [6] Present
E (10−6) a.u. J = 0 J = 1 J = 2 J = 0 J = 1 J = 2

0 0.59 0.00 0.00 1.12 0.00 0.00
1 2.83 0.30 0.00 3.48 0.057 0.0005
2 5.35 0.84 0.01 5.98 0.116 0.0038
3 7.93 1.37 0.02 8.43 0.138 0.010
4 10.4 1.80 0.05 10.79 0.125 0.021
5 12.8 2.10 0.08 13.0 0.091 0.033
6 15.1 2.26 0.12 15.1 0.050 0.050
7 17.2 2.31 0.17 17.0 0.016 0.066
8 19.1 2.25 0.23 18.8 0.0002 0.083

(b) JDY [6] Present
E (10−6) a.u. J = 0 J = 1 J = 2 J = 0 J = 1 J = 2

0 12.6 0.00 0.00 16.61 0.00 0.00
1 17.3 0.21 0.00 19.43 0.079 0.0007
2 20.8 0.54 0.01 23.06 0.1892 0.0048
3 23.8 0.84 0.02 26.11 0.256 0.0136
4 26.5 1.05 0.05 28.73 0.274 0.028
5 28.7 1.16 0.08 31.01 0.252 0.048
6 30.8 1.19 0.12 33.0 0.203 0.073
7 32.5 1.15 0.17 34.76 0.143 0.103
8 34.1 1.05 0.23 36.29 0.082 0.136

scattering lengths and effective ranges were reported and
compared with existing theoretical predictions in our ear-
lier paper [33].

Tables 1a and 1b represent our s-, p- and d-wave scat-
tering cross-sections in the energy range 1×10−6 a.u. to
8×10−6 a.u. and are compared with those of Jamieson,
Dalgarno and Yukich [6]. There are some differences be-
tween the present results and those of Jamieson et al. The
present s-wave predictions for the singlet and triplet cases
are higher than those of Jamieson et al. where as p- and
d-wave cross-sections for both the cases are appreciably
lower than those of the Harvard group. We hasten to add,
the values of the d-wave cross-sections of Jamieson et al.
for both the spin alignments are identical, where as we
have obtained two sets of different results for singlet and
triplet states. The differences between the present results
and those of the Harvard group are not due to the asymp-
totic form of the long range potentials (−C6

R6 − C8
R8 ) as val-

ues of C6 and C8 of present model differ marginally from
those of the Harvard group. The present difference is due
to the short range part of the potential employed. In B-O
model, coupling between the nuclear and the light parti-
cles are neglected whereas present model includes it. The
B-O potential is adiabatic in nature and in the present
model short range potential generated is non adiabatic.
Moreover, B-O potentials used by JDY are erroneous and
ill conditioned which is evident from their later investiga-
tions.

In Table 2, we tabulate the present thermally aver-
aged total cross-sections in the temperature range 1 to 8 K
and compare with those of JDY [6]. Our values for singlet
case are less than those of JDY up to the temperature

Table 2. Thermally averaged total singlet and triplet cross-
sections (10−16 cm2) as functions of temperature.

JDY [6] Present
Temperature T (K) singlet triplet singlet triplet

1 9.71 44.8 8.10 51.3
2 14.0 54.6 13.53 57.97
4 21.1 60.6 25.4 62.68
6 29.0 60.6 35.02 63.03
8 37.5 59.1 42.32 61.94

Fig. 2. Total and s-wave singlet scattering cross-sections (in
units of 10−16cm2) for H−H scattering. Curves: Ps, Present
s-wave cross-section; BKs, Koyama and Baird [5] s-wave cross-
section; Pt, Present total cross-section; BKt, Koyama and
Baird [5] total cross-section.

2 K and beyond this temperature the magnitude of the
cross-sections of JDY are less than those of present model.
In the case of triplet, the present thermally averaged cross-
sections are always greater than those of JDY and the
difference decreases with the increase of temperature. We
have already mentioned the probable reason for these dif-
ferences. As mentioned in our earlier paper [33], our triplet
total thermally averaged cross-section at 2 K lies in be-
tween the maximum value of JDY and measured data [21].

Next we compare the present singlet total and par-
tial wave cross-section in the energy range 1 × 10−10 to
4×10−4 a.u. with those of Koyama and Baird [5]. The total
and s-wave cross-sections (Fig. 2) are in very good qualita-
tive agreement with those of Koyama and Baird through-
out the energy range considered. Peaks and positions of
both the corresponding curves are nearly identical. How-
ever, the s-wave results of Koyama and Baird are greater
than those of present predictions below 2× 10−6 a.u. Fig-
ure 3 represents our p- and d-wave singlet cross-sections
along with those of KB [5]. Here also we have noticed
very good qualitative agreement. Positions and the values
of the maxima of the present predictions for p- and d-
wave cross-sections are almost equal to the corresponding
predictions of KB. Similar feature has been obtained for
J = 3, 4, 5 partial cross-sections for singlet case (Fig. 4).
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Fig. 3. The p-wave and d-wave singlet scattering cross-sections
(in units of 10−16 cm2) for H−H scattering. Curves: Pp, present
p-wave cross-section; BKp, Koyama and Bairdé [5] p-wave
cross-section; Pd, present d-wave cross-section; BKd, Koyama
and Baird [5] d-wave cross-section.

Fig. 4. The f -wave, g-wave and h-wave singlet scattering
cross-sections (in units of 10−16 cm2) for H−H scattering.
Curves: Pf, present f -wave cross-section; BKf, Koyama and
Baird [5] f -wave cross-section; Pg, present g-wave cross sec-
tion; BKg, Koyama and Baird [5] g-wave cross-section; Ph,
present h-wave cross-section; BKh, Koyama and Baird [5] h-
wave cross-section.

We present total and partial wave cross-sections for
triplet state in Figure 5. The total elastic triplet cross-
section is obtained by adding the first six partial wave
cross-sections. We have calculated higher partial waves
and there is no contribution of them in the above men-
tioned energy range. Since previous investigations for in-
dividual triplet partial waves cross-sections in this energy
range (1×10−10 to 4×10−4 a.u.) have not been reported,
we cannot compare our results with any other existing
results. The present total triplet cross-sections are appre-
ciably greater than that of Koyama and Baird below the
incident energy 1 × 10−5 a.u. and beyond that our total

Fig. 5. Triplet scattering cross-sections (in units of 10−16 cm2)
for H−H scattering. Curves: Pt, present total cross-section;
BKt, Koyama and Baird [5] total cross-section; P(s, p, d, f , g,
h) curves are for present partial wave cross-sections from s- to
h-waves.

cross-section are more or less similar to those of Koyama
and Baird.

4 Conclusion

In the present work we have employed close coupling
models to investigate H-H scattering in the energy range
1 × 10−10 to 4 × 10−4 a.u. Our model is ab initio and
non adiabatic in nature. The accuracy of the prediction
depends on the basis set employed. Four different basis
sets have been used to investigate the convergence of the
results with added eigen and pseudostates. The present
basis set (model D) represents the total effective singlet
and triplet potentials in a satisfactory way [33] and this
potential generated by the present model is unique for the
particular basis set.

It has been pointed out by the Harvard group and
others that non adiabatic effect is important in studying
cold atom-atom scattering. Jamieson and Dalgarno [23]
found that non adiabatic correction to the adiabatic one
for the singlet scattering length is by about 25%. On the
other hand our model is purely non adiabatic in nature.

The present model is completely different from the adi-
abatic one as one does not need to calculate the potentials
separately. The present scattering parameters, obtained
here, are in satisfactory agreement with the standard adi-
abatic results of JDY [6] and KB [5]. There is marginal
differences for each partial waves (from J = 0 to 5) sin-
glet cross-sections between ours and those of KB. These
differences are due to the short range part of their B-O
potentials which are not accurate and due to neglect of
non adiabatic effect.

In the present calculation we have not taken into ac-
count the reduced mass effect. However, in a static ex-
change model we perform the calculation including the
mass effect. The results differ by less than 2%. We have
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included the effect of the continuum of both the atoms
via pseudostates. Here we demonstrate the suitability of
the CCA model to investigate H-H scattering. The accu-
racy of the present model depends on the scattering space
included in the calculation. The present results may be re-
fined by using even more elaborate basis sets slightly. The
effect of reduced mass may change the present results to
some extent. The application of the present model to other
atomic systems is rather straight-forward. We advocate
this non adiabatic model to study atom-atom scattering
system at low energies.

The authors thank to the Department of Science and Tech-
nology, Government of India, for the partial financial support
(DST Project No. SR/S2/LOP - 10/2003).
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